Unsupervised Argument Identification for Semantic Role Labeling

نویسندگان

  • Omri Abend
  • Roi Reichart
  • Ari Rappoport
چکیده

The task of Semantic Role Labeling (SRL) is often divided into two sub-tasks: verb argument identification, and argument classification. Current SRL algorithms show lower results on the identification sub-task. Moreover, most SRL algorithms are supervised, relying on large amounts of manually created data. In this paper we present an unsupervised algorithm for identifying verb arguments, where the only type of annotation required is POS tagging. The algorithm makes use of a fully unsupervised syntactic parser, using its output in order to detect clauses and gather candidate argument collocation statistics. We evaluate our algorithm on PropBank10, achieving a precision of 56%, as opposed to 47% of a strong baseline. We also obtain an 8% increase in precision for a Spanish corpus. This is the first paper that tackles unsupervised verb argument identification without using manually encoded rules or extensive lexical or syntactic resources.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Semantic Role Induction via Split-Merge Clustering

In this paper we describe an unsupervised method for semantic role induction which holds promise for relieving the data acquisition bottleneck associated with supervised role labelers. We present an algorithm that iteratively splits and merges clusters representing semantic roles, thereby leading from an initial clustering to a final clustering of better quality. The method is simple, surprisin...

متن کامل

Distributed Representations for Unsupervised Semantic Role Labeling

We present a new approach for unsupervised semantic role labeling that leverages distributed representations. We induce embeddings to represent a predicate, its arguments and their complex interdependence. Argument embeddings are learned from surrounding contexts involving the predicate and neighboring arguments, while predicate embeddings are learned from argument contexts. The induced represe...

متن کامل

Fully Unsupervised Core-Adjunct Argument Classification

The core-adjunct argument distinction is a basic one in the theory of argument structure. The task of distinguishing between the two has strong relations to various basic NLP tasks such as syntactic parsing, semantic role labeling and subcategorization acquisition. This paper presents a novel unsupervised algorithm for the task that uses no supervised models, utilizing instead state-of-the-art ...

متن کامل

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

Unsupervised Induction of Semantic Roles within a Reconstruction-Error Minimization Framework

We introduce a new approach to unsupervised estimation of feature-rich semantic role labeling models. Our model consists of two components: (1) an encoding component: a semantic role labeling model which predicts roles given a rich set of syntactic and lexical features; (2) a reconstruction component: a tensor factorization model which relies on roles to predict argument fillers. When the compo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009